DATING A LATIN ASTROLABE

Emmanuel Davoust
IRAP and Heritage Commission, Observatoire Midi-Pyrénées, 14 Avenue Belin, F-31400 Toulouse, France.
E-mail: manu.davoust@free.fr

Abstract

We have determined the most probable date for the catalog of 34 stars that was used in the construction of a Latin astrolabe originally owned by the Dominican preacher friars and presently in the Musée des Arts Précieux Paul-Dupuy in Toulouse, France. To this end we digitized a photograph of the rete and the rule of the astrolabe, computed the equatorial coordinates of the ends of the 34 star pointers of the rete, and produced a list of 113 reference stars taken from several lists of stars on astrolabes. We then compared the coordinates of the ends of the pointers and those of the reference stars for dates between 1400 and 1700. The most probable date for this astrolabe is 1550 .

Keywords: French astrolabe, astronomical instrument, Musée des Arts Précieux Paul-Dupuy

INTRODUCTION

The astrolabe is an instrument for making astronomical observations and solving many astronomy problems (Hayton, 2012; Hoskin, 1999; North, 1974). It is an instrument with a long history. The stereographic projection was first discussed by Hipparchus of Nicaea and used in the theory of the planispheric astrolabe written by Claudius Ptolemy two centuries later (Gibbs and Saliba, 1984, and references therein), which is based on a double stereographic projection.

The first astrolabe was produced in the Greco-Roman world, perhaps in the fourth century. Treatises of the astrolabe in Arabic became common in the eighth century and Arabic astrolabes were built by astronomers and engineers of the Abbassid Caliphate, mainly in Syria, and spread East to India and West to Muslim Spain.

The diffusion of the astrolabe in Christian Europe dates from the late tenth century when Arabic treatises on the astrolabe were translated into Latin, probably with the encouragement of Gerbert of Aurillac, the future pope Sylvester II. The first Latin astrolabes date from the thirteenth century (Poulle, 1972). Before that, astrolabes were imported from Muslim Spain. In the Middle Ages, it was the most widely used astronomical instrument, for astronomical observations, but also for other purposes, such as teaching at the university. For example, the Sloane astrolabe in the British Museum was used as a teaching tool for the future King Edward III of England (Davis, 2019). The astrolabe was also treasured for its esthetic value, which may have contributed to its popularity.

The astrolabe was progressively replaced around 1700 by the sextant and the theodolite, which were more precise, but lacked abacuses for performing calculations.

2 DESCRIPTION OF THE ASTROLABE

The astrolabe discussed in this paper (Figures 1 and 2) is made of bronze. It has a diameter of 11.5 cm and a thickness of 0.8 cm . It is composed of a mater, an alidade, a rete, a rule and seven plates. It is joined to a ring by a throne decorated with a five-petal flower.

The mater is a disc, on the back of which graduations allow you to determine the height of stars above the horizon and the position of the Sun in the sky for each day of the year using the alidade. On the back is the inscription "Cont. Tolos. Ord. F.F.P.P.", which stands for Conventus Tolosanus Ordinis Fratrum Predicatorum. This inscription must have been added in the seventeenth century, judging from the cursive script. Above the inscription is engraved a round seal, that of the Dominican preacher friars (see Figure 3). On the front of the mater are successively mounted the plate, the rete and the rule.

The plate is a disk on which curved lines are engraved allowing the altitudes of stars to be converted into hours. As the layout of these lines depends on the latitude of the location of the observer, it is necessary to have a plate for each observation latitude. The present astrolabe has seven plates of silvered bronze, 10.7 cm in diameter. Each face of the plates corresponds to a latitude, which is engraved under the line of the horizon. The 14 latitudes are $24^{\circ}-32^{\circ}, 38^{\circ}-42^{\circ}, 45^{\circ}-46^{\circ}, 47^{\circ}-48^{\circ}, 49^{\circ}-50^{\circ}$, $51^{\circ}-53^{\circ}$ and $56^{\circ}-60^{\circ}$. On each face are drawn numbered lines corresponding to the Regiomontanus astrological houses. The line of twilight and dawn is also drawn, which is rather uncommon.

The rete represents a planar projection of the celestial sphere, with the pole star at its center. It is a cut-out disk comprising:

- A graduated ring (representing the ecliptic circle) on which the names of the twelve con-

Figure 1: The front of the astrolabe, with a plate, the rete, the alidade (diagonal bar), the rule (vertical bar) (photograph: Jacques Cadaugade).

Figure 2: The alidade mounted on the back of the mater (photograph: Jacques Cadaugade).

Figure 3: Inscription on the back of the astrolabe's mater (photograph: Jacques Cadaugade).
stellations of the zodiac are generally engraved.

- A segment of a ring representing the Tropic of Capricorn.
- A horizontal bar showing the intersection of the plane of the celestial equator with that of the ecliptic. This bar cuts the rete into two equal parts, the right ascensions from 0 h to 12 h below, and those from 12 h to 24 h above.
- A certain number of pointers (34 for the present astrolabe) whose ends represent the locations of stars.

The rule is a bar for converting lengths into angular distances. It is generally graduated from $+50^{\circ}$ to -20°. The axis of rotation of the rule corresponds to the declination $\delta=90^{\circ}$. Two

Figure 4: The different parts of the rete delimit the values of the right ascension (α) and declination (δ) (diagram: Emmanuel Davoust).
inscriptions are engraved on the rule: "LATITUDO SEPTENTR" and "LAT MERIDIO", and the declination 0° falls between these two inscriptions.

Figure 4 illustrates the values of the right ascension and declination in the different sectors of the rete. The right ascension gradually increases as the rule rotates counterclockwise. The declination, maximum (90°) at the center of the rete, decreases as we move away from the center. It becomes zero on the circle of the celestial equator (which is not represented on the rete of the present astrolabe), and negative outside this circle.

The left intersection between the circle of the celestial equator and that of the ecliptic is the vernal point (the small red point in Figure 4), which is the origin of the equatorial coordinates ($\alpha=0 \mathrm{~h}, \delta=0^{\circ}$). The other intersection corresponds to $\alpha=12 \mathrm{~h}, \delta=0^{\circ}$.

3 ORIGIN OF THE ASTROLABE

Currently, there are two astrolabes in the Musée des Arts Précieux Paul-Dupuy in Toulouse, France. The Arab astrolabe (inventory number 18088), constructed at the beginning of the thirteenth century by Abu Bekr ibn Yusuf, would have belonged to the Ariège astronomer Jacques Vidal (1747-1819), then to Abbot Vi-dalot-Tornier. The Latin astrolabe studied here comes from a convent of the Dominican preacher friars (probably the convent of Toulouse), as indicated by the inscription on the instrument (see Figure 3). It came into the possession of the Toulouse Observatory in Jolimont (inventory number 178) when its Director, Benjamin Baillaud, bought it "... from Mr. Argance, gilder rue des Chapeliers ..." on 19 April $1899,{ }^{1}$ probably to illustrate his lectures at the university. It was deposited in the Museum by the Observatoire Midi-Pyrénées in July 2005.

4 DATING THE ASTROLABE

There is no date of manufacture on the astrolabe, nor are there star names on the rete's 34 pointers. To date the astrolabe, we determined the equatorial coordinates of the ends of the 34 pointers and produced a list of reference stars, then searched for the reference stars closest to each pointer for different dates.

To determine the equatorial coordinates of the tips of the pointers on the rete, we scanned a photographic print of the rete and the rule. The photograph was taken by a professional photographer using an analog camera and a professional reproduction stand. We then measured on the resulting image the positions of the ends of the different pointers and those of the center of the rete in a rectangular coordinate system, as well as the length of the rule in this same system of units (the pixel). The scale was 26.6 pixels/mm.

The right ascension, α, is given by the angle between the rule and the horizontal bar. This angle was determined in two ways: directly with a protractor on the paper print, and by calculation from the Cartesian coordinates on the image. The two methods gave results in good agreement ($\leq 0.2^{\circ}$ difference) and the second measurement, considered the more precise, was adopted as right ascension.

The declination, δ, is obtained by the equation:
$\delta=\pi / 4-2 \operatorname{atan}(r / l)$
where r is the distance (in pixels) from the star to the center of the rete and $/$ is the distance (in pixels) between the center of the rule and the graduation 0 on the rule, knowing that I corresponds to an angular distance of 90° in declinat-
ion. The correspondence between δ and /is not linear, as shown by the above equation and by the tick marks on the rule which are increasingly tight closer to the axis of rotation.

As the rete does not include star names, we produced a list of bright stars inventoried on astrolabes from Tables 3.16, 3.17 and 12.4 of D'Hollander (1999), Table 4 in Torode (1992), and from the list of star names on Eastern astrolabes from the Adler Planetarium (Pingree, 2009) and two lists of astrolabe star names from the National Museum of American History (Tables IIA and IID in Gibbs and Saliba, 1984). Unfortunately, we were unable to access the work of Webster (1999) on the Latin astrolabes
in the Adler Planetarium. The list of 113 reference stars is given in Table 1. The first four columns (Bayer designation, equatorial coordinates in sexagesimal format for the equinox 2000, proper motions in milliarcseconds per year, B magnitude) were taken from the SIMBAD database in 2012, when the research was done. Column 5 lists the frequency of occurrence of the star name in lists of the Adler Planetarium (A) and of the National Museum of American History (Sa and Si) and column 6 lists the occurrence in Table 4 of Torode (1992) when available. Note that Alpha Andromedae is the same star as Delta Pegasi and Beta Tauri is the same as Gamma Aurigae.

Table 1: Reference List of Stars.

Bayer Designation	Coordinates (J2000)	Proper Motions		Mag B	A,Sa,SI	To
Alpha Andromedae	000823.260 +29 0525.55	137.46	-163.44	2.012	0, 3,0	
Beta Andromedae	$010943.924+353714.01$	175.90	-112.20	3.64	6, 2,3	
Gamma Andromedae	$020353.953+421947.01$	43.08	-50.85	3.550	3, 2,0	
Alpha Aquarii	$220547.036-001911.46$	18.25	-9.39	3.905	0, 0,3	
Delta Aquarii	225439.014 -15 4914.98	-42.60	-27.89	3.344	16,20,2	
Alpha Aquilae	$195046.999+085205.96$	536.23	385.29	0.99	29,34,5	131
Zeta Aquilae	$190524.608+135148.52$	-7.25	-95.56	3.016	4, 3,0	
Theta Aquilae	$201118.266-004917.31$	35.26	5.71	3.197	0, 0,0	
Xi Aquilae	$195414.882+082741.23$	101.91	-81.20	5.769	0, 0,0	
Beta Arietis	$015438.411+204828.91$	98.74	-110.41	2.77	1, 0,0	
Gamma Arietis	015331.815 +19 1737.88	79.20	-97.63	3.84	1, 0,0	
Delta Arietis	$031137.765+194336.04$	153.33	-8.28	5.376	0, 1,0	
Alpha Aurigae	$051641.359+455952.77$	75.25	-426.89	0.88	25,21,6	114
Beta Aurigae	$055931.723+445650.76$	-56.44	-0.95	1.969	0, 1,0	
Alpha Bootis	141539.672 +19 1056.67	-1093.39	-2000.06	1.19	12,34,8	132
Beta Bootis	$150156.762+402326.04$	-40.15	-28.86	4.431	0, 1,0	
Gamma Bootis	$143204.672+381829.70$	-115.71	151.16	3.23	0, 0,2	
Epsilon Bootis	144459.217 +27 0427.21	-50.95	21.07	3.36	0, 0,1	
Eta Bootis	$135441.079+182351.79$	-60.95	-356.29	3.250	0, 0,0	
Theta Bootis	$142511.797+515102.68$	-235.40	-399.07	4.55	17, 0,0	
Alpha Cancri	$085829.223+115127.72$	43.23	-29.63	4.401	1, 2,0	
Beta Cancri	$081630.921+091107.96$	-46.82	-49.24	5.000	0, 1,0	
Epsilon Cancri	084027.011 +19 3241.31	-35.60	-12.98	6.460	0, 1,0	
Alpha Canis Majoris	064508.917 -16 4258.02	-546.01	-1223.07	-1.46	24,34,9	137
Zeta Canis Majoris	$062018.792-300348.12$	7.32	4.03	2.83	1, 0,0	
Alpha Canis Minoris	$073918.119+051329.96$	-714.59	-1036.80	0.74	27,32,7	128
Beta Canis Minoris	$072709.042+081721.54$	-51.76	-38.29	2.814	0, 2,0	
Beta Capricorni	$202100.673-144652.98$	44.92	7.38	3.87	1, 0,0	
Gamma Capricorni	$214005.456-163944.31$	187.56	-22.45	4.00	1, 0,0	
Delta Capricorni	$214702.444-160738.23$	261.70	-296.70	3.16	15,10,2	
Alpha Carinae	$062357.110-524144.38$	19.93	23.24	-0.57	0, 0,0	
Alpha Cassiopeiae	$004030.441+563214.39$	50.88	-32.13	3.434	0, 0,1	
Beta Cassiopeiae	$000910.685+590859.21$	523.50	-179.77	2.61	24,21,0	
Alpha Ceti	$030216.773+040523.06$	-10.41	-76.85	4.15	2,5,2	
Beta Ceti	004335.371 -17 5911.78	232.55	31.99	3.06	11,21,6	
Gamma Ceti	$024318.039+031408.94$	-146.10	-146.12	3.56	13,23,0	
Zeta Ceti	$015127.635-102006.13$	40.80	-37.25	4.873	5, 3,8	98
lota Ceti	$001925.674-084926.11$	-15.15	-37.11	4.782	21, 7,0	
Pi Ceti	$024407.349-135131.31$	-8.62	-9.07	4.123	15, 0,0	
Tau Ceti	$014404.083-155614.93$	-1721.05	854.16	4.22	1, 0,0	
Alpha Coronae Borealis	153441.268 +26 4252.89	120.27	-89.58	2.244	28,33,3	107
Alpha Corvi	120824.817 -24 4343.95	99.52	-39.19	4.34	0, 0,1	
Gamma Corvi	$121548.371-173230.95$	-158.61	21.86	2.48	23,21,3	
Alpha Crateris	$105946.465-181755.62$	-462.26	129.49	5.17	17,17,2	
Alpha Cygni	$204125.915+451649.22$	2.01	1.85	1.34	24,28,5	96
Beta Cygni	$193043.281+275734.85$	-7.17	-6.15	4.171	6, 8,0	

Delta Cygni	$194458.479+450750.92$	44.07	48.66	2.881	0, 0,0	
Epsilon Cygni	$204612.682+335812.92$	355.66	330.60	3.520	0, 0,0	
Epsilon Delphini	$203312.772+111811.74$	11.96	-28.97	3.920	13, 6,3	
Alpha Draconis	$140423.350+642233.06$	-56.34	17.21	3.640	4, 0,0	
Gamma Draconis	175636.370 +51 2920.02	-8.48	-22.79	3.760	0, 1,2	
Gamma Eridani	$035801.767-133030.67$	61.57	-113.11	4.595	0,11,0	
Theta Eridani	$025815.675-401816.85$	-52.89	21.98	3.03	17, ,0	
Tau Eridani	$024506.187-183421.21$	334.20	37.19	4.95	0, 1,0	
Alpha Geminorum	$073435.873+315317.82$	-191.45	-145.19	1.63	0, 2,1	
Alpha Herculis	$171438.858+142325.23$	-7.32	36.07	4.51	6, 2,2	
Sigma Herculis	163406.183 +42 2613.35	-7.54	59.42	4.187	0, 0,0	
Tau Herculis	161944.437 +461848.11	-13.33	38.48	3.750	0, 0,0	
Alpha Hydrae	$092735.243-083930.96$	-15.23	34.37	3.486	27,29,6	107
Sigma Hydrae	$083845.437+032029.17$	-19.48	-15.92	5.678	3, 0,0	
Alpha Leonis	100822.311 +115801.95	-248.73	5.59	1.24	14,19,7	122
Beta Leonis	114903.578 +14 3419.41	-497.68	-114.67	2.23	1, 6,2	
Delta Leonis	$111406.501+203125.39$	143.42	-129.88	2.68	2, 0,0	
Epsilon Leonis	$094551.073+234627.32$	-45.61	-9.21	3.762	2, 0,0	
Alpha Librae	$145052.713-160230.40$	-105.68	-68.40	2.912	1, 0,1	
Beta Librae	$151700.414-092258.49$	-98.10	-19.65	2.535	2, 0,0	
Alpha Lyrae	$183656.336+384701.28$	200.94	286.23	0.03	29,33,8	132
Alpha Ophiuchi	$173456.069+123336.13$	108.07	-221.57	2.23	25,31,5	95
Delta Ophiuchi	$161420.739-034139.56$	-47.54	-142.73	4.32	3, 0,2	
Zeta Ophiuchi	$163709.539-103401.53$	15.26	24.79	2.595	3, 2,0	
Nu Ophiuchi	$175901.592-094625.08$	-9.48	-116.69	4.31	0, 0,0	
Alpha Orionis	$055510.305+072425.43$	27.54	11.30	2.27	22,27,3	95
Beta Orionis	$051432.272-081205.90$	1.31	0.50	0.09	26,30,6	125
Gamma Orionis	$052507.863+062058.93$	-8.11	-12.88	1.42	8, 4,0	
Kappa Orionis	$054745.389-094010.58$	1.46	-1.28	1.937	9, 0,0	
Chi Orionis	$055422.983+201634.22$	-162.54	-99.51	5.00	0, 4,2	
Alpha Pegasi	230445.653 +15 1218.96	60.40	-41.30	2.45	2, 0,6	
Beta Pegasi	$230346.457+280458.03$	187.65	136.93	4.09	26,22,3	104
Gamma Pegasi	001314.151 +15 1100.94	1.98	-9.28	2.60	1, 2,0	
Epsilon Pegasi	$214411.156+095230.03$	26.92	0.44	3.962	18,21,1	
Kappa Pegasi	$214438.735+253842.14$	48.13	14.29	4.550	0, 0,0	
Tau Pegasi	$232038.242+234425.21$	29.45	-9.53	4.756	0, 1,0	
Alpha Persei	032419.370 +49 5140.25	23.75	-26.23	2.286	0, 2,3	
Beta Persei	$030810.132+405720.33$	2.99	-1.66	2.07	15,21,3	79
Omicron Persei	$034419.132+321717.69$	8.18	-10.43	3.871	1, 0,0	
Alpha Piscis Austrini	$225739.046-293720.05$	328.95	-164.67	1.25	0, 1,0	
Zeta Puppis	$080335.048-400011.33$	-29.71	16.68	1.97	1, 0,0	
Rho Puppis	080732.649 -24 1815.57	-83.35	46.23	3.24	4, 2,1	
Rho Sagitarii	$192140.359-175049.92$	-25.87	21.46	4.149	2, 0,0	
Alpha Scorpii	$162924.460-262555.21$	-12.11	-23.30	2.96	18,23,3	85
Beta Scorpii	$160526.232-194819.63$	-5.20	-24.04	2.55	0, 0,0	
Delta Scorpii	$160020.005-223718.14$	-10.21	-35.41	2.205	0, 0,0	
Lambda Scorpii	$173336.520-370613.76$	-8.53	-30.80	1.48	0, 0,0	
Alpha Serpentis	154416.074 +06 2532.26	133.84	44.81	3.800	23,24,0	
Rho Serpentis	155115.910 +20 5840.52	-53.32	18.87	6.301	1, 0,0	
Alpha Tauri	$043555.239+163033.49$	63.45	-188.94	2.468	24,33,8	133
Beta Tauri	$052617.513+283626.83$	22.76	-173.58	1.62	0, 2,0	
Eta Tauri	$034729.077+240618.49$	19.34	-43.67	2.806	0, 0,1	
Alpha Trianguli	015304.907 +29 3443.78	10.82	-234.24	3.90	0, 3,0	
Alpha Ursae Majoris	110343.672 +61 4503.72	-134.11	-34.70	2.86	17,12,3	
Beta Ursae Majoris	$110150.477+562256.73$	81.43	33.49	2.376	0, 0,1	
Gamma Ursae Majoris	115349.847 +53 4141.14	107.68	11.01	2.450	0, 0,0	
Delta Ursae Majoris	$121525.561+570157.42$	104.11	7.30	3.410	0, 0,0	
Epsilon Ursae Majoris	125401.750 +55 5735.36	111.91	-8.24	1.801	1, 0,1	
Zeta Ursae Majoris	132355.540 +54 5531.27	119.01	-25.97	2.29	6, 2,0	
Eta Ursae Majoris	134732.438 +49 1847.76	-121.17	-14.91	1.755	6, 3,3	74
Theta Ursae Maioris	$093251.434+514038.28$	-947.46	-535.60	3.63	0, 0,0	
lota Ursae Majoris	$085912.454+480230.57$	-441.29	-215.32	3.33	0, 0,1	
Mu Ursae Majoris	102219.740 +41 2958.27	-81.47	35.34	4.672	5, 2,0	
Xi Ursae Majoris	111810.9 +313144	-430.00	-588.00	4.38	0, 0,0	
Alpha Ursae Minoris	$023149.095+891550.79$	44.48	-11.85	2.591	0, 2,0	
Alpha Virginis	$132511.579-110940.75$	-42.35	-30.67	0.91	27,33,7	129
Epsilon Virginis	$130210.598+105732.94$	-273.80	19.96	3.77	1, 2,0	

Although they constitute the sphere of 'fixed stars', stars do not have time-independent coordinates. These coordinates change regularly because of the precession of the equinoxes, a consequence of the slow change in direction of the earth's axis of rotation. Additionally, stars have small relative displacements with respect to each other, called proper motions. It is precisely these changes in coordinates over time that make it possible to date a catalog of stars.

We calculated the coordinates of the stars listed in Table 1 for all equinoxes between 1400 and 1700 with a step of 50 years, using the precession equations given in the Astronomical Almanac for 2005, page B18. We took into account the proper motions of the stars in these calculations, although the effect of these displacements is small compared to the uncertainties of the coordinates on the astrolabe. Finally, we compared these coordinates with those of the ends of the 34 pointers for each equinox and found the most probable equinox, 1550, by minimizing the difference between the coordinates of the pointer ends and those of the associated stars. We tried to improve the agreement between the position of the reference stars and that of the pointer ends by slightly modifying the
coordinates of the center of the rete, or the length of the rule, or by using the 1570 and 1530 equinoxes. The 1550 equinox remains the one that gives the best agreement. Interestingly, among the astrolabes inventoried by Price (1955), the largest number of Latin ones are dated from 1550.

As two pointer ends (11 and 16) have no matches in our reference list, we searched for other possible candidates in the SIMBAD database. To do this, we limited ourselves to stars brighter than magnitude 5 and with proper motions. We calculated the coordinates of these stars for the 1550 equinox. We were thus able to find two stars not used by astrolabists, 16 Lyncis which is in poor agreement with pointer 11 and Phi Leonis, which is in poor agreement with pointer 16. These two identifications are of low confidence.

The stars associated with the 34 pointers are listed in Table 2, which gives the number of the pointer, the equatorial coordinates (RAp and Decp, in sexagesimal format) of the pointer as derived by our measurements, as well as the coordinates (RA* and Dec*) for the 1550 equinox, separation in degrees, name and V magnitude of the star associated with this pointer in

Table 2: Catalog of the Astrolabe's Stars.

Np	RAp	Decp	RA*	Dec*	Sep	Name	magV	A,Sa,SI	To	Pointer
1	00h14	54×57	00h15	+5403	0.9	Alpha Cassiopeiae	v2.2	0, 0, 1		
2	00h16	-19 ${ }^{\circ} 33$	00h20	$-20^{\circ} 28$	1.3	Beta Ceti	2.0	11, 21, 6		
3	00h40	$34^{\circ} 23$	00h45	+33 ${ }^{\circ} 12$	1.6	Beta Andromedae	2.0	6, 2, 3		
4	02 h 47	$48^{\circ} 32$	02h53	+48.09	1.1	Alpha Persei	1.8	0, 2, 3		
5	03h39	-14*19	03h37	$-14^{\circ} 51$	0.7	Gamma Eridani	3.0	0, 11, 0		
6	04h11	$15^{\circ} 27$	04h10	+15 ${ }^{\circ} 30$	0.2	Alpha Tauri	0.8	24, 33, 8	133	
7	04h44	$45^{\circ} 19$	04h43	$+45^{\circ} 24$	0.2	Alpha Aurigae	0.1	25, 21, 6	114	
8	04h52	-09 21	04h53	-0848	0.6	Beta Orionis	0.2	26, 30, 6	125	
9	05h31	$06^{\circ} 21$	05 h 30	+07013	0.9	Alpha Orionis	0.8	22, 27, 3	95	
10	06 h 23	-15 ${ }^{\circ} 30$	06 h 25	-16 ${ }^{\circ} 10$	0.8	Alpha Canis Majoris	-1.4	24, 34, 9	137	
11	06h40	$45^{\circ} 16$	06 h 24	$+45^{\circ} 32$	2.8	16 Lyncis	4.9			
12	07h13	$06^{\circ} 35$	07 h 16	+06017	0.8	Alpha Canis Minoris	0.4	27, 32, 7	128	
13	07h26	$16^{\circ} 35$	07h52	+1028	8.8	Beta Cancri	3.5	0, 1, 0		straight
14	08h18	$50^{\circ} 19$	08h28	+49 ${ }^{\circ} 42$	1.7	Iota Ursa Majoris	3.2	0, 0, 1		
15	08h21	-08055	09 h 05	-06 ${ }^{\circ} 46$	11.1	Alpha Hydrae	2.0	27, 29, 6	107	
16	10 h 48	-0431	10h54	-01 ${ }^{\circ} 12$	3.6	Phi Leonis	4.5			
17	11h14	$31^{\circ} 47$	10h54	+34002	4.8	Xi Ursa Majoris	2.3	0, 0, 0		
18	11 h 23	$56^{\circ} 29$	11 h 29	+56 ${ }^{\circ} 12$	0.9	Gamma Ursa Majoris	2.4	0, 0, 0		
19	12 h 01	-15 ${ }^{\circ} 57$	11 h 52	$-15^{\circ} 02$	2.4	Gamma Corvi	2.6	23, 21, 3		
20	13 h 02	-13050	13 h 02	-0846	5.1	Alpha Virginis	v1.0	27, 33, 7	129	straight
21	13 h 02	$19^{\circ} 57$	13 h 33	$+20^{\circ} 41$	7.3	Eta Bootis	2.7	0, 0, 0		
22	13 h 33	$11^{\circ} 03$	12 h 39	$+13^{\circ} 24$	13.4	Epsilon Virginis	2.8	1, 2, 0		
23	15h10	$29^{\circ} 38$	15h16	+28017	1.9	Alpha Coronae Borealis	v2.3	28, 33, 3	107	
24	15h33	-19 ${ }^{\circ} 56$	15 h 34	-21 ${ }^{14}$	1.3	Delta Scorpii	2.3	0, 0, 0		
24			15 h 33	-21 ${ }^{\circ} 14$	1.3	Beta Scorpii	2.6	0, 0, 0		
25	16 h 18	$43^{\circ} 40$	16h19	+43025	0.3	Sigma Herculis	4.2	0, 0, 0		
26	16h44	$15^{\circ} 14$	16h54	+14059	2.4	Alpha Herculis	3.1	6, 2, 2		
27	17h56	$14^{\circ} 30$	17h14	+12 ${ }^{\circ} 57$	10.3	Alpha Ophiuchi	2.1	25, 31, 5	95	straight
28	19h 6	$44^{\circ} 43$	19h31	+4405	4.5	Delta Cygni	2.9	0, 0, 0		
29	19 h 41	-01913	19 h 48	$-02^{\circ} 04$	1.9	Theta Aquilae	3.2	0, 0, 0		
30	20 h 20	$43^{\circ} 47$	20 h 26	+43*43	1.1	Alpha Cygni	1.2	24, 28, 5	96	
31	20 h 24	$-20^{\circ} 06$	20 h 03	$-19^{\circ} 12$	5.0	Rho Capricorni	4.8	$0,0,0$		straight

31			$20 h 19$	$-26^{\circ} 49$	6.8	Psi Capricorni	4.1	$0,0,0$	
31			$19 h 56$	$-16^{\circ} 06$	7.8	Beta Capricorni	3.1	$0,0,0$	
32	$22 h 13$	$23^{\circ} 03$	$22 h 22$	$+27^{\circ} 54$	5.3	Eta Pegasi	3.8	$0,0,0$	
33			$22 h 42$	$+25^{\circ} 40$	7.1	Beta Pegasi	v2.4	$26,22,3$	104
33	$22 h 17$	$-17^{\circ} 20$	$22 h 31$	$-18^{\circ} 11$	3.4	Delta Aquarii	3.3	$16,20,2$	
34	$22 h 37$	$10^{\circ} 10$	$22 h 42$	$+12^{\circ} 48$	2.9	Alpha Pegasi	2.5	$2,0,6$	

Figure 5: The rete, pointers (blue numbers) and reference stars (red dots) (photograph modification: Emmanuel Davoust).
columns 1 to 8 . A vin front of the magnitude indicates a variable star. Columns 9 and 10 give the number of astrolabes on which these stars were identified in the different lists. The last column mentions straight or broken pointers, where applicable. In a few cases we have indicated several stars as possible counterparts.

Figure 5 shows the qualitative agreement between the ends of the pointers (numbered in blue) and the associated stars (red dot), which
in 24 of 34 cases is very satisfactory, the angular separation being less than four degrees. In four cases ($13,20,22,27$), the pointer is straight and the agreement poor, suggesting that the astrolabe remained unfinished. In one case (33), the pointer is broken, and a bright star is in its extension. In summary, there are only two pointers $(11,16)$ without a star used by other astrolabes, and to which we could not associate a star from the reference list.

Figure 6: Histogram of the separations between stars and pointers (plot: Emmanuel Davoust).

We have determined that the 1550 equinox is the most probable one for the catalog of stars. But the accuracy of this value is difficult to estimate. Since the astrolabe results from a double stereographic projection, the scale is not uniform across the rete. For example, an error of 4 pixels $(0.15 \mathrm{~mm})$ in the measurements corresponds to an error of 0.6° at $\delta=0^{\circ}$, of 1° at δ $=40^{\circ}$ and of 2° at $\delta=80^{\circ}$. The histogram of separations between star and pointer (Figure 6) shows a regular decrease to 4°, and then 10 outliers. We assume that errors or inaccuracies in the catalog of stars used in the construction of this astrolabe are at the origin of these outliers, and attribute the distribution of the 24 others to uncertainties in our measurements of the tips of the pointers and to minor defects in the construction of the astrolabe. The average separation of 1.5° corresponds to an uncertainty of about 90 years in the equinox. This estimate can be compared to the standard deviation of 86 years for the difference in the date calculated from the precession and obtained by other means by Torode (1992) for 11 Flemish astrolabes which he found were the most accurate ones that he studied.

Torode (1992) gives a list of the 20 most popular stars on the 137 astrolabes that he studied. They were all represented on at least 74 astrolabes. Among them, eight were not used for this astrolabe despite their high frequency. Did our method overlook them in the search for matching stars, or did the astrolabist
ignore them? Figure 7 shows the location of the eight missing stars. The star Beta Per (Algol) would have given a poorer agreement with the pointer four than the brighter star Alpha Per (Mirfak). The stars Alpha Aql, Alpha Lyr and Alpha Boo, although very bright, are more than 10° from the nearest pointer. The other four stars could not have been part of the catalog without the addition of pointers to the rete.

5 PECULIARITIES OF THE ASTROLABE

This astrolabe is not signed. As we dated to 1550 the star catalog which was used to construct it, we could attribute its construction to a member of the Flemish school of astrolabists of that time, in particular to the itinerant astrolabist Adrien Descrolières (active in the second half of the sixteenth century), because Dominican preacher friars of Toulouse owned an unsigned astronomical quadrant by Descrolières, which is currently also in Musée des Arts Précieux Paul-Dupuy. But the rete of that quadrant looks nothing like the one on our astrolabe. A morelikely possibility, suggested by Raymond d'Hollander (private communication) is that the Dominican preacher friars (or whoever owned the astrolabe before them) asked an Arabic astrolabist to produce an instrument with Gothic inscriptions, because the European astrolabists did not acquire a real know-how until the early fifteenth century. David King himself (private communication) thinks that it is a copy of an Arabic astrolabe.

Figure 7: Positions of the eight stars in Torode's (1992) list absent from the astrolabe's star catalog (photograph modification: Emmanuel Davoust).

There are 34 star pointers on the astrolabe of the Dominical preacher friars. This is a relatively large number compared to the number on the various astrolabes described in the two major monographs, those of Pingree (2009) and Gibbs and Saliba (1984). In the Adler Planetarium collection, four out of 29 astrolabes have more than 33 stars, and for those in the Na tional Museum of American History the figure is one of 35 Arabic astrolabes and zero of eight Latin astrolabes. The Spanish astrolabe studied by King (2003) has 21 stars. The histogram in Figure 8, based on three lists of astrolabe stars, shows that on average an astrolabe has 27 stars. The Gaussian fitted to the histogram has a standard deviation of 4.5 . The difference in the number of stars in our astrolabe from the
average is therefore significant.

6 NOTES

1. Invoice of Mr. Argance to Faculté des Sciences de Toulouse, April 19, 1899. Municipal Archives of Toulouse, inventory number 2R 48.

7 ACKNOWLEDGMENTS

I thank Jacques Cadaugade who photographed the astrolabe and digitized the photographic prints. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This is the revised translation of a technical report (in French) for the Musée des Arts Précieux Paul-Dupuy, which is available at
https://hal.science/hal-04269582v2. I thank David King and Raymond D'Hollander for providing information relevant to this study, and an
anonymous referee for constructive remarks that greatly helped me improve the paper.

Figure 8: Histogram of the number of stars on astrolabes in three lists of astrolabe stars (plot: Emmanuel Davoust).

8 REFERENCES

Davis, J., 2019. Fit for a King: decoding the Great Sloane astrolabe and other English astrolabes with "quatrefoil" retes. In Rodríguez-Arribas, J., Burnett, C., and Ackermann, S. (eds.), Astrolabes in Medieval Cultures. Leiden, Brill. Pp. 310-356.
D'Hollander, R., 1999. L'Astrolabe: Histoire, Théorie et Pratique. Paris, Institut Océanographique de Paris.
Gibbs, S., and Saliba, G., 1984. Planispheric Astrolabes from the National Museum of American History. Washington, Smithsonian Institution Press (Smithsonian Studies in History and Technology, 45, 1-231.
Hayton, D., 2012. An Introduction to the Astrolabe. Epamphlets on the history of science (dhayton.haver-ford.edu/wp-content/uploads/2012/02/Astrolabes.pdf).
Hoskin, M., 1999. The astrolabe. In Hoskin, M. (ed.), The Cambridge Concise History of Astronomy. Cambridge, Cambridge University Press. Pp. 63-67.
King, D.A., 2003. An astrolabe from 14th-century Christian Spain with inscriptions in Latin, Hebrew and Arabic. A unique testimonial to an intercultural encounter. Suhayl, Journal for the History of Exact and Natural Sciences in Islamic Civilisation, 3, 6-156.
North, J.D., 1974. The astrolabe. Scientific American, 230, 96-106.
Pingree, D., 2009. Eastern Astrolabes: Historic Scientific Instruments of the Adler Planetarium (Volume II). Chicago, Adler Planetarium.
Poulle, E., 1972. Les instruments astronomiques de l'Occident Latin aux Xle et XIle siècles. Cahiers de Civilization Médiévale, 57, 27-40.
Price, D.J. de S., 1955. An international checklist of astrolabes. Archives Internationales d'Histoire des Sciences, 8, 234-263; 363-381.
Torode, R.K.E, 1992. Study of astrolabes. Journal of the British Astronomical Association, 102, 25-30.
Webster, R., 1999. Western Astrolabes: Historic Scientific Instruments of the Adler Planetarium (Volume I). Chicago, Adler Planetarium.

[^0]Observatoire Midi-Pyrénées in Toulouse where he studied the morphology and dynamics of elliptical galaxies, starburst galaxies and globular clusters in external galaxies.

While his main research interest was in stellar systems, he also published papers on celestial mechanics (the general three-body problem) and in bibliometry (the publishing activity of astronomers, and the role of references in astronomy). His duties as astronomer included teaching at the Université Paul Sabatier, giving conferences in popular astronomy, and contributing to the maintenance of the SIMBAD database at Strasbourg Observatory.

He has been a member of the Heritage Commission of the Observatoire Midi-Pyrénées since its foundation in 1992, saving, inventorying and restoring old astronomical instruments and photographic plates.

He is the author of a book on the search for life in the Universe, which has been translated into five foreign languages, and a book on the history of Pic du Midi Observatory, which is also available in English.

Emannuel retired in 2012 and was an Astronomer Emeritus until 2018, active in the Heritage Commission.

[^0]: Dr. Emmanuel Davoust was born in Stockholm in 1946. He obtained a BSc in Physics from the French University in Beirut in 1970 and an MSc in Astronomy from the University of Toronto in 1972. After completing one year of military service, he joined Besançon Observatory, observing with the meridian circle and doing research on globular clusters. He obtained the degree Doctorat de Troisième Cycle on the dynamics of globular clusters under the supervision of Michel Hénon in 1980. He then spent a year at the University of Texas at Austin, working with Gérard de Vaucouleurs on spiral galaxies and with Roger Broucke on problems of celestial mechanics. He obtained the degree Doctorat Etat under the supervision of Gérard de Vaucouleurs in 1983. Three years later he joined the

